
Meridian: A Design Framework for
Malleable Overview-Detail Interfaces
Bryan Min

bdmin@ucsd.edu
University of California San Diego

La Jolla, California, USA

Haijun Xia
haijunxia@ucsd.edu

University of California San Diego
La Jolla, California, USA

Figure 1: Meridian is a design framework for creating overview-detail interfaces (ODIs) that are malleable by default. Tradition-
ally, designers and developers build interfaces using their respective tools, but this separation makes it difficult to transfer
designs across teams. At the same time, this process often excludes end-users from personalizing the very interfaces intended
for them. Meridian introduces a specification language for ODIs that integrates with developer packages, UI design tools, and
end-user interfaces—enabling all three groups to equally establish interface needs.

ABSTRACT
Overview-detail interfaces (ODIs), which present an overview of
multiple items alongside a detailed view of a selected item, are ubiq-
uitously implemented in software interfaces. However, the current
design and development pipeline lacks the infrastructure to easily
support end-user customization, limiting its ability to support di-
verse information needs. This research envisions a development
cycle for building malleable interfaces—one where designers, devel-
opers, and end-users alike can create, modify, and use the interface
equally. To establish a foundation for this infrastructure, we in-
troduce Meridian, a design framework for guiding and facilitating
the creation of malleable ODIs. The framework consists of a high-
level declarative specification language for ODIs as well as its tools,
including a UI development package and a no-code web builder
to facilitate the development and design of malleable ODIs. We
demonstrate how Meridian supports designers, developers, and
end-users alike in designing, implementing, and interacting with
ODIs in novel ways using their respective familiar tools and plat-
forms. Finally, we discuss technical tradeoffs, potential solutions,
and opportunities for enabling interface malleability by default.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2037-6/2025/09
https://doi.org/10.1145/3746059.3747654

CCS CONCEPTS
• Human-centered computing→ User interface toolkits; In-
teractive systems and tools.

KEYWORDS
Overview-Detail Interfaces, Design Framework, Specification Lan-
guage, Malleable Interfaces

ACM Reference Format:
Bryan Min and Haijun Xia. 2025. Meridian: A Design Framework for Mal-
leable Overview-Detail Interfaces. In The 38th Annual ACM Symposium
on User Interface Software and Technology (UIST ’25), September 28-October
1, 2025, Busan, Republic of Korea. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3746059.3747654

1 INTRODUCTION
Overview-detail interfaces (ODIs) are among the most ubiquitous
interface design patterns in information systems, as they support
a fundamental information behavior—users often need to view
an overview of large collections of information to identify ones
of interest and then examine them in detail. ODIs can be found
in our email clients, calendars, shopping websites, food delivery
applications, and numerous others.

For decades, ODIs have been developed with a one-size-fits-all
approach like many other software applications: developers con-
figure a fixed overview (e.g., grid, map, timeline), determine which
details to show in the overview, and define the composition and

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3746059.3747654
https://doi.org/10.1145/3746059.3747654

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

interaction of the views. However, a single configuration fails to
meet the diverse needs of all users [23, 37]. Consequently, users
must work with overviews that do not match their mental models
and repeatedly switch between views to gather details of interest,
hindering the effective use of information. To address this friction,
Min et al. proposed the notion of malleable ODIs, which enables
end-users to flexibly manipulate the presentation of attributes in
the views as well as their composition and layout [36]. For example,
end-users can customize a malleable ODI in a shopping website by
surfacing couch dimensions into the overview and then transform-
ing the overview into various representations such as a color space
to explore couches by color. Such malleability was found empow-
ering and desirable, as it enabled end-users to flexibly manipulate
the ODI to suit their own needs [36].

Despite the potential of malleable ODIs, the existing UI design
and development approach lacks the infrastructure to easily support
malleability in interfaces. First, designers must create mockups for
many, if not all, potential transformations available on the interface,
requiring them to create and manage numerous combinations of
variations. Second, developers must implement these designs from
scratch, requiring them to bind attributes to the UI, organize views
and their content, build their navigation logic, and re-implement
customization features that are already present in other interfaces.
Lastly, even if end-users can customize them, there is no succinct
way of observing these customizations by designers and developers.

While designers create ODI designs, developers implement ODIs
in code, and end-users interact with them through the interface,
they all perform their activities within their individual tools and
languages. However, if we want malleability supported in interfaces
by default, we must enable designers, developers, and end-users
to equally establish an agreement on the information shown and
interactions possible on the interface. To achieve this, we need a
design convention that designers, developers, and end-users alike
can easily adopt and share.

We proposeMeridian, a design framework for guiding and facil-
itating the creation of malleable ODIs across all three stakeholders.
At its core, Meridian is powered by a specification language that
formalizes the conceptual model of ODIs. This specification lan-
guage integrates into a development package that renders Meridian
specifications into malleable ODIs and a visual website builder
to explore variations of ODI designs. By leveraging the Meridian
specification, designers can easily export and share ODI designs to
developers, developers can instantly render them in the interface,
and end-users can succinctly communicate customizations as logs
back to designers and developers. By bridging familiar workflows
across designers, developers, and end-users under a shared specifi-
cation language, we reduce the cost to build and transfer malleable
ODIs between different stakeholders.

We took an evaluation-by-demonstration approach [30] to show-
case how three groups of major stakeholders, designers, developers,
and end-users design, implement, and interact with ODIs in novel
ways using their respective familiar tools and platforms. The Merid-
ian specification, development package, interface builder, and a
gallery of examples are open-source1 to invite broader collabora-
tion and enable a thriving malleable ODI ecosystem.

1https://github.com/meridian-ui/meridian

Figure 2: The overview-detail design pattern makes up three
components: overview, item view, and detail view. This ex-
ample shows Etsy’s search results page presenting items in a
grid and a detail view in a new page.

2 MALLEABLE ODI DESIGN CONVENTION
We aim to establish and promote a design convention of malleable
ODIs through a design framework. We first define malleable ODIs,
discuss the envisioned benefits of establishing malleable ODIs as a
design convention, and then introduce our design approach.

2.1 Malleable ODI Definition
Malleable ODIs are extensions from overview-detail interfaces,
which primarily involve three kinds of views (Fig. 2):

Overviews display a large collection of information entities us-
ing a specific organization structure to allow users to examine all
the entities with the functional affordances of the structures. For
example, an email client uses a list to organize emails by time, ac-
commodation applications like Airbnb use a map for users to view
homes by their location, and a scatterplot distributes data points
by two number values.

Item Views represent information entities inside the overviews,
and are positioned based on organizational rules of the overviews.
Item views present key details that allow the users to gain an initial
understanding of the information entities.

Detail Views contain all the details of an information entity.
Detail views are typically invoked from the item views when users
identify and open ones of interest.

Through an analysis of 303 ODIs found in existing websites, Min
et al. identified three key design dimensions of ODIs [36]:

Content, describing which attributes are shown in each view.
Composition, describing the logical connections among views,

such as how many overviews in the interface, and whether an
overview opens one kind of pop-up or multiple.

Layout, describing the spatial arrangement of views within the
interface and the interactions that invoke those views.

Following their analysis, they designed and developed malleable
ODIs, ones that end-users can customize by transforming ODIs
along variations in the three dimensions.

2.2 Design Approach
The goal of our design framework is to establish a convention
for malleable ODIs that enables malleability by default, yet can
easily integrate into familiar tools for designers and developers.
Our approach is informed by the definition of malleable ODIs and
the aforementioned benefits that we wish to obtain.

https://github.com/meridian-ui/meridian

Meridian: A Design Framework for Malleable Overview-Detail Interfaces UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

EmployingHigh-level Declarative Specification. As indicated
by the definition, ODIs can be modeled by their composition and
content in the views, and both the composition and content can be
described using properties of specific entities. This makes it suitable
to describe ODIs with a high-level declarative specification. There-
fore, the malleability of ODIs—in other words, modifications made
on ODIs—can be expressed as transformations in the specification.
As pointed out by prior work [21], a suitable high-level declarative
language enables users to interact with key domain concepts more
directly, and leave low-level execution to the run time.

Decoupling Data Binding and Views. Many existing develop-
ment frameworks and UI libraries like Angular [16] and React [34]
facilitate data-binding of attributes inside their views. This makes it
challenging to flexibly interchange views and content for different
UI variations or reuse the view of one ODI for another. We instead
aim to define data binding and views separately when building
ODIs. This would enable users to interchange data sources for the
same ODI instance and interchange ODI instances for the same
data source. It can also promote an ecosystem of ODI templates
that can directly apply to diverse data sources.

Suitable Tooling for Different Stakeholders. Although a well-
designed, high-level specification language that uses more readable
formats (e.g., JSON) can lower the barriers of entry, they are still
challenging to sift through. We aim to support our specification
language with the necessary tools to support designers, developers,
and end-users alike. This involves demonstrating end-user interac-
tion techniques, a developer package, and a website builder.

3 THE MERIDIAN SPECIFICATION
We introduce the Meridian specification language for ODIs, which
maps data attributes to the UI, controls which attributes are shown,
composes overviews and detail views, defines their layouts, and
enables control over which customizations the interface supports.
Meridian specifications are structured as JSON objects to broadly
integrate across various systems. A sample specification of a hotel
booking website is shown and described in Figure 3.

3.1 Specifying Views
In its essence, an ODI’s goal is to represent a collection of items
such that it is approachable for the user. This process of represent-
ing them starts from specifying the views. Meridian defines two
properties: overviews, which contains a list of overviews and item
views, and detailViews, which contains a list of detail views. We
describe how ODIs can be specified along the three dimensions
using these views.

Overviews and Item Views. Meridian aims to simplify the cre-
ation of overviews by allowing users to define them using a single
type property, which determines the overview’s layout and rep-
resentation of items, such as ‘list’, ‘grid’, and ‘map’. Each
overview also specifies a default item view UI type through the
itemView property, though users can explicitly define one as well.
These specifications control the number of overviews displayed
and specify which overview and item view UIs the ODI present.
Meridian provides a set of default overview and item view types,
which users can extend to include custom ones.

Detail Views. Detail views are also defined with a type, which
includes sets of defaults such as ‘basic’ and ‘article’. These
views determine where and how the detail view appears through
three properties: openIn, openFrom, and openBy. The openIn prop-
erty specifies where the detail view opens, such as a ‘pop-up’,
‘side-by-side’, or ‘new-page’. The openFrom property deter-
mines which attributes, when selected, will open the detail view,
and the openBy property defines the type of selection, such as
‘click’ or ‘hover’. The openFrom property can be set to ‘item’
to open the detail view upon selecting the entire item view, while
openBy can support a custom event hook, allowing for customways
to define how the user opens the detail view.

Detail views can be defined directly within an overview (Fig.
3.11) but can alternatively be defined in a dedicated list and linked
to overviews by referencing the detail view ids (Fig. 3.12).

Shown and Hidden Attributes. Users need diverse sets of at-
tributes depending on their tasks and views. To support this, Merid-
ian allows users to specify lists of attributes to show or hide in
each overview or detail view. By adding a role (roles explained in
Section 3.2) to the shownAttributes or hiddenAttributes lists,
users can determine which attributes are displayed or hidden in
the views. Setting the property to ‘all’ includes all attributes in
that list, while setting it to an empty array includes none.

View-Specific Data Binding. Meridian also enables overviews
and detail views to contain bindingId for each individual view.
This allows, for instance, for multiple overviews to contain differ-
ent sets of data, such as two different maps of hotels—one in San
Francisco and one in La Jolla.

Recursion. There are often cases of overviews and detail views
recursively composed of each other, a common example being a
shopping page containing recommended items inside a detail view,
which upon clicking a recommended item opens another detail
view with another set of recommendations. Overviews and detail
views can be composed recursively by referencing each other’s ids
in their respective view properties (Fig. 12).

3.2 Specifying Data Binding
Meridian provides the property dataBinding for binding data at-
tributes to the ODI. This property is a single object that is respon-
sible for mapping the data attributes of each item in a given data
collection to the views in the ODI.

Attributes. To construct this data binding of data to ODI at-
tributes, users can create an attribute object and reference a prop-
erty in the data through the value property. The values are rendered
as strings by default, but they can be defined as other types either
provided by default such as image and link, or even a custom one
created by the developer.

Roles. Since malleable ODIs render attributes into various view
representations (e.g. lists, maps, timelines), one view could place
an thumbnail image on the left, while another could place it on the
right. To support placement-agnostic specifications from the data
binding, we define attributes with roles. Roles embody a declarative
approach to attribute placement, as it describes what an attribute
should be rather than where it should be placed. This makes views

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

{

 dataBinding: [{

 id: "query",

 binding: {

 itemId: ".itemId",

 attributes: [

 { value: ".name", roles: ["title"] },

 {

 value: ".details.photo",

 type: "image",

 roles: ["thumbnail"]

 },

 { value: ".details.rating", roles: ["subtitle"], },

 {

 roles: ["subtitle"],

 attributes: [

 { value: ".address_obj.street1" },

 {

 value: ".address_obj.street2",

 condition: { exists: ".address_obj.street2" }

 },

 { value: ".address_obj.city" },

 { value: ".address_obj.country" },

]

 },

 { value: ".details.price_level", roles: ["tag"] },

 {

 value: ".details.amenities",

 roles: ["spec"],

 transform: [{ map: ".amenity" }]

 },

],

 }

 }],

 overviews: [

 {

 type: "list",

 itemView: { type: "compact" },

 shownAttributes: ["title", "subtitle", "thumbnail",

 "key-attribute", "action", "link"]

 },

 {

 type: "grid",

 detailViews: [

 {

 type: "full",

 openFrom: ["title"],

 openIn: "side-by-side",

 openBy: "click",

 overviews: [

 {

 showIn: "footer",

 bindingId: "recommended",

 type: "carousel"

 }

],

 detailViews: [

 {

 type: "gallery",

 openFrom: ["thumbnail"],

 shownAttributes: ["thumbnail"]

 }

]

 }

],

 },

],

 detailViews: [

 { id: "article", type: "article" }

],

 malleability: {

 content: {

 types: ["toggle"]

 },

 composition: {

 disabled: true

 },

 layout: {

 types: ["menus"]

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

7

1

2

3

4

5

6

Data Binding Specification

Reference the data source for data binding1

Reference values from data with the prefix “.”2

Assign attributes with type to describe how they are
rendered and roles map to where they are shown in
the view.

3

Attributes can contain multiple attributes.4

Conditionals can determine whether an attribute
should or should not be rendered.

5

Attributes carrying lists of attributes can transform
into an attribute group by mapping or filtering.

6

7

8

9

10

11

12

View Specification

Define the overview type. Other properties can
additionally be defined such as the item view type
and which attributes to show.

7

Detail views are defined inside overviews, and can be
defined with a type, which specifies the elements that
open the view, where to open it in, and how to select it.

8

9 Compose views in detail views.

Specify where to display composed overviews.
Overviews can also reference different data sources
with bindingId, such as a list of recommended items.

10

Detail views can also specify which attributes to
show or hide.

11

Define detail views independently from overviews.
Overviews can reference external detail views via id.

12

13

14

Malleability Specification

Specify malleability features for each dimension, and
how the features are shown in the UI.

13

All malleability features are enabled by default, but
can be disabled through the specification.

14

click “title”

list with compact items

open side-by-side

gallery detail view

carousel

toggle to customize
shown attributes

10

8

11

13

Figure 3: The Meridian specification is made up of three main components: data binding, views, and malleability. First, data
binding describes the mapping from a data source to attributes rendered in the ODI. Second, views describe what attributes
are shown in which views, how views are composed, layouts of items, and how detail views are opened. Lastly, malleability
specifies which customizations the end-user will have access to.

Meridian: A Design Framework for Malleable Overview-Detail Interfaces UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

responsible for placing roles, which are then populated by attributes
assigned to those roles. For example, an attribute with the role
‘title’ will be placed in the title area of a view, while an attribute
with the role ‘subtitle’ will be placed either above or below the
title, depending on what the view has defined. Users can define
roles to attributes and place the roles when creating their views, but
Meridian also provides a standard with 12 roles to use by default.

Attribute Groups. There are many cases where closely related
attributes need to be grouped and styled together in the ODI. Merid-
ian supports grouping by enabling attribute objects to contain either
a data value or another list of attributes. Attribute groups share the
same style, role, and id properties as standard attribute objects,
allowing all attributes within a group to inherit a common UI map-
ping and style. For example, a hotel’s address details may consist
of multiple attributes. Users can define these attributes as a group,
assign an ‘address’ type and create a component that renders the
attributes in a single row.

3.3 Specifying Malleability
The malleability specification controls two aspects: 1) whether to
enable customization and, if so, for which dimensions, and 2) which
UI interactions to provide for each customization option. For exam-
ple, the UI for customizing which attributes to show or hide could
be implemented as a ‘toggle’. When toggled on, this highlights
all manipulable attributes, allowing users to select which attributes
to show or hide in each view [36]. Another implementation could
involve providing a ‘console’ panel (Fig. 4) that lists all attributes,
enabling users to check or uncheck which attributes they wish to
show or hide.

4 DEMONSTRATION ONE: END-USERS
TheMeridian specification is designed to bemodifiable by end-users
in powerful ways without having to expose the internal data source
or codebase. For the first of our three sets of demonstrations, we
illustrate Meridian’s generative power by demonstrating how end-
users can modify ODIs in ways that were previously non-trivial.

Figure 4: Meridian enables end-users to customize ODIs by di-
rectly modifying the specification. For instance, (1) selecting
a “thumbnail” role to show in the overview will (2) directly
transform item views to show “thumbnail” attributes.

Customization Widgets [D1-1]. Min et al. presented various
interaction techniques for customizing ODIs along the three di-
mensions [36]. This included surfacing and hiding attributes in
views, computing and generating new attributes on the fly, sorting
and filtering by any attribute in the overview, creating multiple
overviews, and transforming overview and detail layouts.

However, each design probe needed to implement each cus-
tomization feature in each ODI dimension to provide all ODI cus-
tomizations. In contrast, a Meridian-built malleable ODI can also
support these interactions by default by presenting the specifica-
tion in an editable console (Fig. 4). Indeed, websites can extend
upon the console widget, such as by providing a global toolbar to
prioritize overview layout customizations, tiled view managers for
composition, or generative AI to prompt for customizations.

Figure 5: Systems can transport and reuse Meridian specifi-
cations to benefit end-users by automatically personalizing
ODIs in different platforms and applications.

Exchanging Specifications [D1-2]. The Meridian specifica-
tion is a JSON object, which makes exporting and importing it
across malleable ODIs direct (Fig. 5). For example, end-users can di-
rectly copy specifications from websites and paste them into others.
For instance, if a user prefers the overview layout of Etsy’s over
Amazon’s, they can replace Amazon’s overview with Etsy’s while
retaining Amazon’s items. Additionally, a browser extension may
also save frequently made ODI customizations and automatically
apply them to other ODIs. For example, calorie-conscious users may
consistently surface attributes relating to ingredients and calories,
whereas those with cost concerns may surface prices instead. The
browser extension can apply these customizations upon seeing new
online menus, enabling each user to effectively carry a personal
lens to view ODIs through their desired presentation.

Figure 6: Meridian provides a simple solution to enabling
semantic zoom on ODIs by translating scroll or pinch inter-
actions to showing and hiding attributes in the overview.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

Semantic Zooming [D1-3]. Semantic zooming is an interaction
technique for zoomable user interfaces that scale items semantically
as opposed to the traditional geometric approach [4]. This allows
users to zoom out to view an overview of their canvas without los-
ing view of textual descriptions of objects. This technique has been
demonstrated across various spatial canvas systems throughout
decades [10, 44, 45] demonstrating its broad use cases. However, it
has found little implementation across real-world ODIs.

The Meridian specification enables interfaces to implement se-
mantic zooming in any ODI in a simple implementation. Systems
can detect mouse scroll or trackpad pinch events, and append or
remove attributes from shownAttributes property of an overview.
This allows users to zoom in and out to gradually reveal more or
less attributes on any overview interface. For example, a user can
semantic zoom in on a list of synonyms to reveal definitions and
example sentences (Fig. 6).

Furthermore, Meridian can allow end-users to custom define
levels of abstraction by allowing them to prioritize which attributes
they want shown across different zoom levels. This contrasts to the
traditional approach where the only the developers determine the
most appropriate details to show at each level.

Figure 7: Meridian opens the space for exploring direct ma-
nipulation techniques for modifying ODIs. For instance, end-
users can (1) drag an item to the side of its previous to trans-
form the layout to a list and (2) resize an item into a small
pin view to arrange items spatially.

Direct Manipulation [D1-4]. Min et al. demonstrated one op-
portunity for direct manipulation in malleable ODIs, where end-
users could select and drag attributes between views. The Meridian
specification provides a higher-level abstraction for operating on
ODIs, enabling us to directly map direct manipulation interactions
to moves from one ODI variation to another (Fig. 7).

First, dragging an item can translate to overview layout changes:
dragging one item below another signals a shift to a list overview,
whereas dragging an item to the right signals a change to a grid. Sim-
ilarly, resizing an item can translate to layout changes: flattening an
item vertically signals a shift into a table overview, while shrinking
an item into a small square represents turning items into nodes
within a spatial canvas layout. Second, while Min et al. demon-
strated that dragging attributes signals the overview to display
those attributes, we can extend this interaction such that dragging
attributes while holding the “option” modifier key creates a new
view containing only the dragged attributes. Lastly, when semantic
zooming out on an overview (D1-3), users can select attributes to
keep beforehand. As they zoom out, the interface gradually hides
unselected attributes, but keeps selected ones visible.

Figure 8: The Meridian specification language can serve as
an interface for AI to generate ODIs. For instance, a hotel
website could feature an AI chatbot that, when asked about
hotels, generates a malleable ODI—customizable through
either conversational input or direct interaction.

Generating with AI [D1-5]. Another opportunity Meridian
presents is the ability to structure the generation of user interfaces
with AI. AI can generate a Meridian specification directly rendered
on the interface. One instantiation is demonstrated in Figure 8,
where a hotel booking website can present an AI chatbot that facil-
itates hotel search by conversation alongside a Meridian-generated
ODI on the side. Users can prompt AI to “show the ratings” or
even ask to “show this list of hotels like how Airbnb shows their
houses, prompting AI to reproduce Airbnb’s overview layout, which
presents a grid and a map.

Since ODIs generated with Meridian are scoped inside a single
specification, AI applications can integrate Meridian into the inter-
face in other diverse layouts. For example, interfaces can generate
ODIs inside AI’s chat response, similar how ChatGPT [38] and
Gemini [15] display UI components inside the conversation.

5 DEMONSTRATION TWO: DEVELOPERS
In this section, we demonstrate how the Meridian framework can
help developers build malleable ODIs. To do so, we built a developer
package that renders Meridian specifications into interactive mal-
leable ODIs on the web. We introduce the package by illustrating a
development workflow and use the package to reproduce three mal-
leable ODIs from real-world websites. Through these examples, we
assess the breadth of the Meridian specification, sharing limitations
and potential solutions to addressing them.

5.1 Developer Package
We use a hotel booking website as an example to demonstrate a
workflow of the package. We use Tripadvisor’s API2 to ground our
example with a real-world reference.

Create the attribute binding specification. Before using the pack-
age, the developer prepares API calls from their database that fetch
a list of hotels and their details. Using this data, the developer adds
each attribute they plan to display into the data binding specifica-
tion. This includes the name of the hotel, images, location, ratings,
reviews, rankings, amenities, and more. They then assign roles and
types to attributes, such as an ‘image’ type for the thumbnail.

2https://www.tripadvisor.com/developers

https://www.tripadvisor.com/developers

Meridian: A Design Framework for Malleable Overview-Detail Interfaces UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Source Data

Custom Components

Meridian Specification <MeridianWrapper/>

<Overview/> <ItemView/>

<Attribute/>

<DetailView/>

Figure 9: The developer package pipeline. Inputting the data, specification, and custom components into the developer package’s
main component, <MeridianWrapper/>, processes those inputs and renders them through the view and attribute components.

Input data and specification. Before creating the view specifica-
tion, the developer passes the data and its binding specification
into <MeridianWrapper/>, the base component that processes data,
specifications, and custom components for the package to render
(Fig. 9). By default, the Meridian package presents the items in a list
layout, several attributes shown in the overview, and functionality
for opening detail views by clicking either the hotel name.

Create the view specification. The developer makes additional ad-
justments by first creating an overview object and specifying which
attributes to show in the overviewwith roles ‘title’, ‘subtitle’,
‘thumbnail’, ‘tag’, and ‘review-summary’. They also create a
detail view inside the overview object that navigates to a new page
instead of a pop-up. The package then instantly updates the views
to support those changes. The developer decides to make another
detail view that shows a gallery of all images of a selected hotel. To
do so, they add a second detail view object with type ‘gallery’
that opens by clicking the attribute with role ‘thumbnail’.

Customize ODI templates. The developer looks to apply their
company’s design system with branded color palettes, icons, and
widget styles. The developer first copies the code of Meridian’s view
templates (i.e. ‘list’ overview, ‘profile’ item view, and ‘full’
detail view) into their codebase and then customizes the layout and
style of the attributes. They also add custom content such as text,
labels, and icons. In addition to creating custom views, they also
create custom attribute components such as a ‘button’ and an
‘image-gallery’. Finally, they import their custom components
into <MeridianWrapper/> to reflect their changes.

Test malleability. As the developer builds their malleable ODI by
creating the specification and custom components, they interact
with the ODI, opening detail views and customizing attributes and
layout. If they find UI inconsistencies, the developer goes back to
their specification and custom components to fix them.

5.2 Reproducing Real-World Examples
To assess the expressiveness of the Meridian developer package, we
used it to reproduce three representative real-world ODIs: an online
shopping page for smartphones3, a soccer field with each team’s
formations4, and a thesaurus that recursively composes overviews
containing related words5. We outline our implementation strate-
gies, limitations, and opportunities for growth.

Since the example websites were not open source, the first au-
thor recreated the data attributes from each page, saving them into

3https://www.att.com/buy/phones/
4https://www.marca.com/en/
5https://www.merriam-webster.com/dictionary/sophistication

JSON objects. They additionally recreated the theme of each ODI
by saving image assets, replicating style with CSS, and develop-
ing necessary widgets (image gallery). Since these development
responsibilities also exist in developing standard ODIs, we did not
consider them towards challenges to build ODIs with our tools.
We were able to reproduce the three ODIs to an extent at which
they were fully interactive and presented all information from the
original websites. We developed these websites using Next.js, a
React framework. The gallery of the reproduced examples can be
found at: https://github.com/meridian-ui/meridian.

overviews: [{

 type: 'grid',

 hiddenAttributes: ['main-feature', ...]

 detailViews: [

 {

 type: 'phone-view',

 openFrom: ['quick-view'],

 shownAttributes: ['title', ...]

 },

 {

 id: 'new-page-detail',

 type: 'full',

 openFrom: ['item'],

 openIn: 'new-page',

 hiddenAttributes: ['features', ...]

 }

]

}]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 10: The Meridian view specification for AT&T’s online
phone shopping website.

5.2.1 Online Smartphone Shop [D2-1]. The shopping page
presented two different types of items: 1) a list of phones with many
attributes including the brand, name, price, deals, and various spec
options and 2) an advertisement for their company, which contained
a different set of attributes. We specified these two types by creating
two attribute groups, each with a condition that showed one group
if the item’s type was a phone or advertisement.

The ODI of the page presented a grid overview opening three
different detail views: a new page showing the full view of a selected
phone, a pop-up for a “quick view” of seeing key details, and another
pop-up for a full list of rewards and offers for the phone. To specify
this, we created an overview object with type ‘grid’ and composed
three detail view objects, each opening in their respective ways and
with their respective set of attributes. Finally, we created custom
grid, item, and attribute components so the ODI resembles the
original website in terms of its attribute layout and UI style.

https://www.att.com/buy/phones/
https://www.marca.com/en/
https://www.merriam-webster.com/dictionary/sophistication
https://github.com/meridian-ui/meridian

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

overviews: [

 {

 id: 'players',

 type: 'soccer-field',

 bindingId: 'players',

 detailViews: [

 {

 type: 'player',

 openFrom: 'all'

 }

],

 hiddenAttributes: ['spec']

 }

]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 11: The Meridian view specification for a soccer for-
mation of players and their match statistics.

5.2.2 Soccer Formations [D2-2]. Soccer formations presented a
unique overview that presented two teams in various formations on
a soccer field. Clicking a player opens a pop-up, presenting match
information such as goals scored and minutes played. The overview
uniquely places players depending on the team formation (e.g., 4-4-
2, 4-2-3-1). To enable this, we added each player’s positionId in the
list of internalAttributes, since this data was not shown in any
view and only used for positioning. We created a custom overview
that places players depending on their team’s formation and their
positionId, and added the rest of the data binding specification,
view specification, and other custom components.

detailViews: [

 {

 id: 'word',

 type: 'thesaurus',

 openFrom: 'all',

 shownAttributes: 'all',

 overviews: [{

 id: 'synonyms-list',

 type: 'grid',

 itemView: { type: 'synonym' },

 showIn: ['spec'],

 shownAttributes: ['key-attribute'],

 attributeBindingId: 'synonyms',

 detailViews: ['word']

 }]

 }

]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 12: The Meridian view specification for Merriam-
Webster’s online thesaurus.

5.2.3 Thesaurus [D2-3]. The thesaurus website demonstrated
two unique properties: 1) the detail view was the first interface as
opposed to the overview, and 2) the overviews and detail views
composed each other recursively. To support the first property,
we specified the overviews property with an empty array and
populated the detailViews property with one detail view object.
To support the second, we first specified the detail view object with
the id ‘word’ and added an overview object into the detail view’s
overviews list. Then, we added the id ‘word’ in the overview
object’s detailViews property, allowing the overview to open
the detail view from which it originated. Finally, we assigned the
overview two additional properties to enable the recursive ODI: 1)
a showIn property to define where the overview appears within the
detail view and 2) an attributeBindingId property with value
‘synonyms’, which meant the overview presented a list of items
inside an attribute, rather than a data binding specification.

5.3 Malleable ODI Rendering Pipeline
5.3.1 Summary. The package renders ODIs in three main stages:
1) processing data, the specification, and custom components, 2)
constructing the specified ODI variation, and 3) rendering the UI
with given data attributes.

First, to process data and the specification, a dedicated process-
ing module maps the list of items from the data source into the
structure of the data binding specification. This creates a list of
items, each containing attributes specified by the data binding. Cus-
tom components are saved to the package’s store, ready to render
then when it identifies the type from the specification.

Second, the package identifies the necessary types for overview,
detail view, item view, and attribute components, such as the grid
in Figure 10 or the popup in Figure 11. These view components are
selected, ready to render to the interface.

Finally, the data attributes from the data binding specification
are passed down through the constructed view components and
rendered in the attribute component where its specified type (e.g.,
string, image, link) is determined (Fig. 9).

5.3.2 Unique Cases. Our three examples surface several unique
cases that do not necessarily follow a basic ODI specification struc-
ture in which a single list overview opens a single detail view with
several attributes shown.

The first example demonstrates how multiple details can open
from one overview. This example contains three detail views. The
first opens when the entire item component is clicked, so the item
view attaches a click event listener that renders the detail view on
click. The other two open when specific attributes in the overview
are clicked, and each attribute gets its own click event listener.

The second example presents a custom soccer field overview,
but the item views in this overview are icon-sized components, as
opposed to larger item views in list and grid views. This means this
overview has a maximum number of attributes it can show without
cluttering view with too many. To address this, we updated our
custom item view component to limit the number of attributes it
could present with four attributes—one for each corner. By doing so,
surfacing attributes did not just add the attribute to the overview,
but also replaced an existing attribute, maintaining a compact size
yet enabling customizability.

The third example demonstrates a recursive ODI, where an
overview is inside its own detail view. The package supports re-
cursive views by treating composed overviews as custom attribute
components—similar to how buttons and image galleries are treated
as custom attributes. To achieve this, the package first identifies the
view that references its ancestor view—in this case, the overview.
Then, before processing any parts of the specification, the pro-
cessing module creates a new attribute in the data binding speci-
fication with type ‘overview’, adds the values from showIn into
the attribute’s roles, and transfers the attribute data referenced
by attributeBindingId to the new attribute. This makes the
overview attribute component render inside the layout of the detail
view as opposed to being rendered as the view itself.

Meridian: A Design Framework for Malleable Overview-Detail Interfaces UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Figure 13: The Meridian no-code website builder interface. (1) Users can first import JSON or CSV data to drag attributes to
the ODI, (2) modify the Meridian specification, (3) explore design variations on a spatial canvas, (4) either add attributes to
template placements or manually position attributes, and (5) style them.

5.4 Limitations
As we developed the three examples, we faced several limitations
in implementing aspects of the interface across components and
the specification.

Imprecise attribute arrangements. Although the development
package automatically arranged attributes across different view
layouts, we inevitably needed to make precise changes in most
views. For instance, although our default vertical item view could
arrange attributes below the thumbnail vertically just as the smart-
phones example did, it did not provide a default option for attributes
that floated on the right side. While our package offers an escape
hatch through custom components, we see opportunities to improve
expressiveness by supporting richer layout specifications.

Limited support for niche conditional cases. We encountered sev-
eral conditional cases in our specification we could not elegantly
address. In the smartphones example, a detail view presented an
attribute group containing a list of offers for purchasing a phone,
while the overview presented only the first one. Although we can
specify which attributes to show, we do not yet support attributes to
show depending on their index or order in the list. Our workaround
was to create another attribute that only contained the first element
in the list of offers. In future iterations of the specification, Meridian
should support more solutions for conditional views within the list
of item data.

Limited support for variable number of views. While Meridian
supports an arbitrary number overviews and detail views in the
specification, it does not support a variable number of views. In

the thesaurus example, some words carry multiple definitions, each
presenting an overview list of synonyms. Although the data binding
specification could support this case, the view specification could
not. Future iterations of Meridian should explore how views can be
mapped to a variable number of overviews, possibly by bringing
map and transform operations from the data binding specification
to the overview as well.

6 DEMONSTRATION THREE: DESIGNERS
In this section, we demonstrate how Meridian can facilitate unique
design workflows for creating malleable ODIs. We used the devel-
oper package described in the previous section to build a no-code
website builder (Fig. 13) that allows designers to import data, bind
attributes to the ODI, style them, explore a design space of ODI vari-
ations, and integrate data analytics to inform their design choices.

6.1 No-Code Website Builder
Many interface and visualization authoring tools—such as Data
Illustrator [33], Voyager [52], Lyra [54] for visualizations, and Wix
[51] and Squarespace [42] for websites—have demonstrated the
usability and expressive power of their platform for authoring
complete visualizations and websites without code. To demonstrate
how Meridian can do the same for ODIs, we designed our no-code
website builder to resemble these tools, adopting similar interaction
paradigms to support ease of use and expressiveness. We illustrate
the website builder through a scenario of designing a hotel booking
website, highlighting three unique design workflows that leverage
the Meridian specification.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

6.1.1 Building from Scratch [D3-1]. Designers can borrow an
instance of fetched hotel data from a developer and import the file
into the web builder. Upon importing the file, a list of attributes
populate on the left sidebar. They can then explore the attributes,
assigning types if needed (Fig. 13.1).

The center of the interface presents a canvas with template
overviews and detail views, which display a default arrangement of
attribute roles. Designers can drag attributes from the left sidebar
onto one of these roles, populating that role with the attribute (Fig.
13.4). Then, they can select attributes and change their style using
the style configuration features provided on the right sidebar (Fig.
13.5). Designers can also rearrange attributes in the item view. They
start by selecting an individual attribute, unlocking its position
using the right sidebar, and then dragging it to a new location.
Additionally, they can move an entire group of attributes associated
with a specific role to the bottom of the item view.

Designers can then modify the ODI design (Fig. 13.5). They start
by adjusting which attributes are visible in the overview, then create
a new detail view that reveals the full address of a hotel when the
user hovers over the location. Finally, they can export their ODI
design specification as a JSON object and share it to developers for
them to integrate into the codebase.

Figure 14: Meridian allows designers to explore the larger
design space of ODIs by generating ODI variations on the
canvas. Users can (1) click “Design Space” on a property and
(2) view and interact with the produced variations.

6.1.2 Generating and Viewing the Design Space [D3-2]. The
Meridian’s specification, which formalizes the ODI design space,
unlocks an opportunity for designers to explore a large design
space of ODI variations, facilitating divergent thinking [19] and
parallel design [29]. The web builder provides this opportunity by
presenting a design space of ODI variations on a canvas (Fig. 14).

To view the design space, the designer navigates to the left side-
bar with ODI settings and clicks “Design Space” next to a property.
Upon clicking this button for the type property in the overview, the
overview in the canvas multiplies and spreads into a grid, showing
all of the overview layout types. The designer looks through ones of
interest, while dragging a fewmore attributes into the overview, dis-
playing the attributes for every item across every overview. Finally,
they select a variation to set as their default.

Figure 15: The Meridian specification can map to usage an-
alytics, providing insights into how popular various ODI
customizations are. Importing a usage data file into the web-
site builder can highlight popular ODI variations in both (1)
the settings console and (2) the interface mockups.

6.1.3 Data-driven Design [D3-3]. While iterating on our de-
sign framework, we conducted informal interviews with industry
designers and developers across diverse sectors (contracting, bank-
ing, SaaS, etc.), gathering insights on their ODI creation workflows.
Some interviewees shared that their design teams struggled to
justify certain design choices—such as using a dropdown versus
navigating to a new page for a detail view—hinting at a lack of
detailed analytics on user behavior with ODIs.

Although we currently lack a comprehensive and precise under-
standing of which ODI variations benefit which scenarios, Meridian
presents an opportunity to facilitate this process of gathering user
interactions structured by the specification, translating them into
concrete design insights, and presenting them to the designer.

In the web builder, the designer may receive an additional dataset
from data analysts containing insights on time spent interacting
with variations of a malleable ODI, such as a popularity distribution
of various attributes, time spent on certain layouts, and popular ODI
settings created and used across large populations. Upon import-
ing this dataset, the web builder may highlight popular variations
with colors and shades, as well as recommend combinations (Fig.
15). This would allow the designers to create better default ODI in-
stances for users, such as moving certain attributes to the overview,
or moving attributes in easily discoverable areas in the detail views.

6.2 Implementation
We implemented the no-code website builder as a Next.js web
application. Under the hood, the website builder is built around
the Meridian developer package, adding various UI design features
wrapped around the ODI. As depicted in Figure 13, these features
include a data-binding component, settings panel, a spatial canvas,
and a UI style editor. The ODI components are rendered inside the
spatial canvas.

The main extension of the website builder is our custom-built,
editable item component. Instead of displaying default item view
components that display the attributes, editable item views enable
users to drag and drop attributes onto the component (Fig. 13.4) and
directly select, edit, and style them. We found that this approach
opened two interaction opportunities for the no-code web builder.
First, we could create multiplemodes for editing item attributes. For

Meridian: A Design Framework for Malleable Overview-Detail Interfaces UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

instance, we implemented one mode for dragging attributes into a
template that automatically places them into fixed layouts (shown
in Figure 13.4) and another mode for flexibly placing attributes any-
where without layout constraints. This helped manage a balance
between too much structure and too little when creating UI mock-
ups. Second, switching between item views offered the opportunity
to switch between editing and previewing the malleable ODI. Since
the editing features are scoped inside the item view component,
the settings panel (Fig. 13.2) offered both the editable and default
item views for users to switch between.

Another key extension of the website builder is the end-user
interface for data binding attributes to the interface. In the cur-
rent Meridian specification language, data binding attributes and
adding roles to each attribute may grow cumbersome and difficult
to manage in the developer package, especially for detail-rich ODIs.
Dragging and dropping attributes from the attributes panel (Fig.
13.1) to the editable item view (Fig. 13.4) automatically completes
two actions that involve data binding. First, the system creates a
new attribute object from the dropped attribute and is appended to
the attributes list in the specification (Section 3.2). Next, when
the attribute is dropped in one of the areas in the template (Fig.
13.4), the system adds the name of the area to the attribute object as
a role (Section 3.2). From our internal tests with the website builder,
we found that this could reduce the cost of data binding attributes
to the interface, potentially reducing this burden on the developers.

7 DISCUSSION AND FUTUREWORK
We presented Meridian, a design framework that aims to set a
convention for designing, building, and interacting with malleable
ODIs alongside tools to enable this convention. Meridian is powered
by the Meridian specification language, acting as a shared language
between designers, developers, and end-users. We demonstrated
the expressive power of Meridian by implementing malleable ODIs
and tools that facilitate novel workflows for end-users, developers,
and designers.

Real-world use of Meridian. We implemented malleable ODIs
using real data and real websites, showcasing Meridian’s ability
to support various ODIs for real-world interfaces. However, build-
ing and designing software interfaces involves understanding and
integrating a much larger scope than we explored in this paper.

Many production-grade software systems typically provide two
REST API calls, one for the overview and one for the detail view.
As a result, making a customization such as surfacing a detail view
attribute to the overview would require the system to fetch each
detail view’s data, incurring significant performance costs. However,
this architecture is not just a challenge for Meridian, but also for
existing ODI systems. One of our interviewees (Section 6.1.3), a
front-end engineer building ODIs with REST APIs, mentioned in
order to change which attributes are shown in a view, they need to
wait for their back-end engineers to update the API to implement
those changes.

One avenue that systems may shift towards when using the
Meridian design framework is a more flexible API querying method
like GraphQL 6 over the more traditional, table-centric REST APIs.

6https://graphql.org/

Another interviewee, a full-stack engineer who developed apps
using GraphQL at a SaaS company, noted that GraphQL effectively
addresses the problem in REST APIs by batching API calls for re-
quired attributes. However, it can introduce challenges in efficiently
caching these attributes and managing fetches with varying costs.

We see an opportunity to use Meridian to further explore the
tradeoffs involved in implementing malleable ODIs at an architec-
tural level. Even though some teams inevitably may choose not to
build ODIs with Meridian, there are still groups that can benefit
from the framework without needing to engage with the technical
details of the software, such as e-commerce websites that rely on
CSV data sources to manage their inventory. In future work, we aim
to deploy, test, and observe the real-world use of Meridian across
various settings and system architectures, as well as gather insights
from long-term end-user behavior.

Blurring the line between customization and interaction.
Our demonstrations showcased various interaction techniques that
could modify the Meridian ODI specification, including semantic
zooming, direct manipulation, and prompting with AI. These inter-
action techniques are generally not considered to be customization
techniques, yet mapping them to the Meridian specification enables
end-users to customize ODIs.

By making interfaces malleable by default and greatly reduc-
ing the friction to customize the interface, we see an emerging
opportunity for blurring the distinction between customization and
interaction. We see a parallel with sorting and filtering, which are
customization operations but are now ubiquitous across many inter-
faces and now considered just a way to interact with a collection of
items. As Meridian makes ODI customizations more broadly avail-
able, we are interested in exploring how user interactions that help
them customize features with little friction can shift their mindset
towards performing these customizations.

Integrating Meridian into more tools. Our demonstrations
explored various tools for developers and designers to build mal-
leable ODIs. We implemented a developer package to help spec-
ify the data binding and views of ODIs and built on top of this
a website builder for allowing designers to design ODIs without
code. We see opportunities for Meridian to be used in more work-
flows, through more tools. For instance, continuous integration and
development (CI/CD) teams may want to present visualizations
according to usage behavior of ODIs. We envision visualization
tools can leverage the Meridian specification and usage behavior
to form interactive ODI variations mapped to visualizations Ad-
ditionally, UI component managers like Storybook help designers
and developers manage responsive components and widgets they
can use to help integrate a design system into their applications.
Such tools may further integrate the Meridian specification to allow
users to easily manage custom overview, item view, detail view, and
attribute components. They can further create responsive designs
of these components by binding attributes such as width and height
to different specifications. This may enable desktop users to open
detail views in a side-by-side view, while mobile users open detail
views in a new page.

https://graphql.org/

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

8 RELATEDWORK
8.1 User Interface Frameworks
A design and development framework for user interfaces establishes
a convention for creating a specific type of interfaces and often
comes with tools, such as software libraries, as well as design and
development environments to help the designers and developers
follow the convention.

User interface conventions are often defined through specifi-
cation languages, such as HTML and CSS for web structure and
styling or SwiftUI for iOS applications [2]. Prior work has also
explored JSON-based specifications for web interfaces, mapping
data attributes to rendered UIs [7, 9, 41]. These conventions have
been carried over into tools that help design, manage, and build
these interfaces. For example, Figma [11] allows users to export the
styles of UI mockups created on its platform as CSS code, while
Storybook [43] helps manage design systems for UI components
built with HTML and CSS. UI frameworks like Material-UI [17], Ant
Design [18], and Bootstrap[6] establish conventions for styling but-
tons, sliders, forms, and pop-ups by implementing them as reusable
UI components for web applications. Additionally, platforms like
Wix [51] and Webflow [48] provide a visual editor for building
HTML/CSS websites through drag-and-drop interactions. While
these design frameworks support the creation of both full web-
sites and individual UI components, Meridian sits in between these
layers. Meridian’s tools can integrate into broad design and devel-
opment platforms like Figma and Wix, while also leveraging UI
components from libraries such as Material-UI and Bootstrap.

An analogy can be drawn between the theories and frameworks
of user interfaces with those for visualizations. In visualization,
programming libraries like D3.js [8] allows developers to create
any data-driven graphics, by enabling the developers to manipulate
the DOM elements and establish data bindings. At a higher-level of
abstraction, Wilkinson’s Grammar of Graphics introduced the con-
ceptual framework for thinking about how to describe and build
plot-based visualizations [50]. With this conceptual framework,
plotting systems like ggplot2 [49] and Vega-Lite [40] enable users
to create data plots using high-level declarative language, without
concerning about how low-level graphical elements are composed.
While systems like Vega-Lite make sacrifices in terms of their ex-
pressive power, it opens an ecosystem of diverse tools in return, as
it greatly reduces the cost of creating common data charts.

We see Malleable ODIs residing at the level of ggplot2 and Vega-
Lite, but for user interfaces, targeting one of the most ubiquitous
interface design patterns. Our work is a first step towards establish-
ing an ecosystem of diverse tools to support malleable interfaces
for diverse platforms and usage scenarios.

8.2 Achieving the Vision of Malleable Interfaces
Generations of HCI researchers have envisioned digital information
environments that are personal, dynamic, andmalleable—ones users
can easily and expressively customize to achieve their own needs
through new functionalities and representations [12, 23, 24, 27].
This perspective compares software to “clay”—a material in which
end-users can dynamically shape to address their desired needs
[24]. A common approach in malleable interfaces has been to open
underlying data models and code, allowing users to create custom

scripts in the GUI [3], modify the look and behavior of objects
[25], customize the presentation of views [1], and create custom
representations of web pages and media [14, 27]. Another approach
explored opened existing systems, particularly browsers, to enable
end-users to directly customize CSS properties [26, 28, 47], embed
scripts and annotations into the DOM [39], transform list items
with custom operations [22, 32], and form web mashups [5, 13, 20,
31, 35, 46, 53].

These approaches have explored making the underlying archi-
tecture more open to malleability. The first approach enables mal-
leability inherently through the software architecture. However,
opening the software can be challenging for end-users who are
not familiar with programming. The second approach enables mal-
leability by tackling one feature or aspect at a time, such as the
style of a website through an interface for customizing CSS or the
order of items with a function to scrape web elements and sort
them. However, the focus on only one feature of the interface limits
end-users from seeing a design space of potential customizations
they can make, and limits them from transferring what they have
learned in one context to another.

Instead, we explore how to make interfaces malleable one de-
sign pattern at a time, starting with the overview-detail pattern.
By identifying key design dimensions and making them directly
manipulable, we enable users to expressively customize the pattern
without requiring programming skills. Moreover, focusing on a
design pattern allows users to easily transfer what they learn from
one instantiation to another.

Perhaps the most major barrier to adopting malleable interfaces
is motivating the development of malleable systems in the first
place. Compared to approaches that require adopting entirely new
programming models [7], ODIs are relatively self-contained compo-
nents that can be more readily integrated into existing UI develop-
ment workflows. While ODIs alone do not make entire applications
malleable, their strength lies in their ubiquity. By establishing de-
sign conventions for malleable ODIs and providing supporting
tools for their design and development, we aim to drive widespread
improvements in the malleability of software interfaces.

9 CONCLUSION
This paper introduces Meridian, a design framework that guides
and facilitates the creation of malleable ODIs. Meridian is powered
by the Meridian specification language which describes ODIs along
three dimensions: content, composition, and layout. Meridian pro-
vides a high-level specification language of ODIs across different
user groups, enabling end-users to customize ODIs, developers
to build ODI websites, and designers to create ODI designs. We
demonstrated how Meridian can integrate into familiar platforms
and tools used by the three groups by building end-user interfaces, a
developer package, and a design tool. We hope Meridian illustrates
the opportunities for an ecosystem of malleable ODIs.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their help-
ful comments and Peiling Jiang, Brian Hempel, and Matthew T.
Beaudouin-Lafon for their insightful feedback on the specification
language. This work was supported by NSF under grant IIS-2432644.

Meridian: A Design Framework for Malleable Overview-Detail Interfaces UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

REFERENCES
[1] Eytan Adar, David Karger, and Lynn Andrea Stein. 1999. Haystack: per-user

information environments. In Proceedings of the Eighth International Conference
on Information and Knowledge Management (Kansas City, Missouri, USA) (CIKM
’99). Association for Computing Machinery, New York, NY, USA, 413–422. https:
//doi.org/10.1145/319950.323231

[2] Apple. 2025. SwiftUI. https://developer.apple.com/xcode/swiftui/ Accessed
April 2, 2025.

[3] Bill Atkinson. 2024. HyperCard. https://arstechnica.com/gadgets/2019/05/25-
years-of-hypercard-the-missing-link-to-the-web/. Accessed December 3, 2024.

[4] Benjamin B. Bederson and James D. Hollan. 1994. Pad++: A Zooming Graphical
Interface for Exploring Alternate Interface Physics. In Proceedings of the 7th
Annual ACM Symposium on User Interface Software and Technology (Marina del
Rey, California, USA) (UIST ’94). Association for Computing Machinery, New
York, NY, USA, 17–26. https://doi.org/10.1145/192426.192435

[5] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
2005. Automation and customization of rendered web pages. In Proceedings of the
18th Annual ACM Symposium on User Interface Software and Technology (Seattle,
WA, USA) (UIST ’05). Association for Computing Machinery, New York, NY, USA,
163–172. https://doi.org/10.1145/1095034.1095062

[6] Bootstrap. n.d.. Bootstrap. https://getbootstrap.com/ Accessed: 2025-04-10.
[7] Marcel Borowski, Luke Murray, Rolf Bagge, Janus Bager Kristensen, Arvind

Satyanarayan, and Clemens Nylandsted Klokmose. 2022. Varv: Reprogrammable
Interactive Software as a Declarative Data Structure. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
492, 20 pages. https://doi.org/10.1145/3491102.3502064

[8] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: Data-Driven
Documents. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis) (2011).
http://vis.stanford.edu/papers/d3

[9] Yining Cao, Peiling Jiang, and Haijun Xia. 2025. Generative and Malleable
User Interfaces with Evolving Task-Driven Data Schema. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’25). Association for Computing Machinery, New York, NY, USA, 21 pages.
https://doi.org/10.1145/3706598.3713285

[10] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. 2009. A review of
overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv. 41,
1, Article 2 (jan 2009), 31 pages. https://doi.org/10.1145/1456650.1456652

[11] Figma Inc. 2016. Figma. https://www.figma.com/. Accessed: 2025-04-08.
[12] Amy Rae Fox, Philip Guo, Clemens Nylandsted Klokmose, Peter Dalsgaard,

Arvind Satyanarayan, Haijun Xia, and James D. Hollan. 2020. Towards a dy-
namic multiscale personal information space: beyond application and document
centered views of information. In Companion Proceedings of the 4th International
Conference on Art, Science, and Engineering of Programming (Porto, Portugal)
(Programming ’20). Association for Computing Machinery, New York, NY, USA,
136–143. https://doi.org/10.1145/3397537.3397542

[13] Giuseppe Ghiani, Fabio Paternò, Lucio Davide Spano, and Giuliano Pintori. 2016.
An environment for End-User Development of Web mashups. International
Journal of Human-Computer Studies 87 (2016), 38–64. https://doi.org/10.1016/j.
ijhcs.2015.10.008

[14] Camille Gobert andMichel Beaudouin-Lafon. 2023. Lorgnette: CreatingMalleable
Code Projections. In Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (San Francisco, CA, USA) (UIST ’23). Association
for Computing Machinery, New York, NY, USA, Article 71, 16 pages. https:
//doi.org/10.1145/3586183.3606817

[15] Google. 2025. Google Gemini. https://gemini.google.com/ Accessed July 12,
2025.

[16] Google. n.d.. Angular. https://angular.dev/ Accessed: 2025-04-10.
[17] Google. n.d.. MaterialUI. https://mui.com/ Accessed: 2025-04-10.
[18] Ant Group. n.d.. Ant Design. https://ant.design/ Accessed: 2025-04-10.
[19] Joy Paul Guilford. 1961. Three faces of intellect. (1961). https://doi.org/10.1037/

h0046827
[20] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. 2007. Program-

ming by a sample: rapidly creating web applications with d.mix. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 241–250. https://doi.org/10.1145/1294211.1294254

[21] Jeffrey Heer and Michael Bostock. 2010. Declarative language design for interac-
tive visualization. IEEE transactions on visualization and computer graphics 16, 6
(2010), 1149–1156.

[22] David F. Huynh, Robert C. Miller, and David R. Karger. 2006. Enabling web
browsers to augment web sites’ filtering and sorting functionalities. In Proceedings
of the 19th Annual ACM Symposium on User Interface Software and Technology
(Montreux, Switzerland) (UIST ’06). Association for Computing Machinery, New
York, NY, USA, 125–134. https://doi.org/10.1145/1166253.1166274

[23] David Karger. 2007. Haystack: Per-User Information Environments Based on
Semistructured Data. In Beyond the Desktop Metaphor: Designing Integrated

Digital Work Environments, Victor Kaptelinin and Mary Czerwinski (Eds.). MIT
Press, start–end.

[24] Alan Kay and Adele Goldberg. 1977. Personal dynamic media. Computer 10, 3
(1977), 31–41.

[25] Alan C. Kay. 1993. The early history of Smalltalk. SIGPLAN Not. 28, 3 (March
1993), 69–95. https://doi.org/10.1145/155360.155364

[26] Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim. 2022. Stylette: Styling the
Web with Natural Language. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 5, 17 pages. https:
//doi.org/10.1145/3491102.3501931

[27] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery,
New York, NY, USA, 280–290. https://doi.org/10.1145/2807442.2807446

[28] Google Chrome Labs. 2024. Project VisBug. https://github.com/
GoogleChromeLabs/ProjectVisBug/. Accessed August 29, 2024.

[29] Paul Laseau. 2000. Graphic thinking for architects and designers. John Wiley &
Sons.

[30] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[31] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau. 2009.
End-user programming of mashups with vegemite. In Proceedings of the 14th
International Conference on Intelligent User Interfaces (Sanibel Island, Florida, USA)
(IUI ’09). Association for Computing Machinery, New York, NY, USA, 97–106.
https://doi.org/10.1145/1502650.1502667

[32] Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. 2020. End-user
software customization by direct manipulation of tabular data. In Proceedings of
the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Virtual, USA) (Onward! 2020).
Association for Computing Machinery, New York, NY, USA, 18–33. https://doi.
org/10.1145/3426428.3426914

[33] Zhicheng Liu, John Thompson, AlanWilson,Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173697

[34] Meta. n.d.. React Documentation. https://react.dev/ Accessed: 2025-04-10.
[35] Bryan Min, Matthew T Beaudouin-Lafon, Sangho Suh, and Haijun Xia. 2023.

Demonstration of Masonview: Content-Driven Viewport Management. In Ad-
junct Proceedings of the 36th Annual ACM Symposium on User Interface Soft-
ware and Technology (San Francisco, CA, USA) (UIST ’23 Adjunct). Association
for Computing Machinery, New York, NY, USA, Article 60, 3 pages. https:
//doi.org/10.1145/3586182.3615827

[36] Bryan Min, Allen Chen, Yining Cao, and Haijun Xia. 2025. Malleable Overview-
Detail Interfaces. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’25). Association for Computing
Machinery, New York, NY, USA, 26 pages. https://doi.org/10.1145/3706598.
3714164

[37] Bonnie A. Nardi. 1993. A small matter of programming: perspectives on end user
computing. MIT Press, Cambridge, MA, USA.

[38] OpenAI. 2025. Introducing ChatGPT Search. https://openai.com/index/
introducing-chatgpt-search/ Accessed July 12, 2025.

[39] Hugo Romat, Emmanuel Pietriga, Nathalie Henry-Riche, Ken Hinckley, and Car-
oline Appert. 2019. SpaceInk: Making Space for In-Context Annotations. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Ma-
chinery, New York, NY, USA, 871–882. https://doi.org/10.1145/3332165.3347934

[40] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.
1109/TVCG.2016.2599030

[41] Yoshiki Schmitz. 2025. https://x.com/yoshikischmitz/status/
1176642448077967362 Accessed April 2, 2025.

[42] Inc. Squarespace. n.d.. Sqarespace. https://www.squarespace.com/ Accessed:
2025-07-13.

[43] Storybook. n.d.. Storybook: Fontend Workshop for UI Development. https:
//storybook.js.org/. Accessed: 2025-04-09.

[44] Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024.
Luminate: Structured Generation and Exploration of Design Space with Large
Language Models for Human-AI Co-Creation. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
’24). Association for Computing Machinery, New York, NY, USA, Article 644,

https://doi.org/10.1145/319950.323231
https://doi.org/10.1145/319950.323231
https://developer.apple.com/xcode/swiftui/
https://arstechnica.com/gadgets/2019/05/25-years-of-hypercard-the-missing-link-to-the-web/
https://arstechnica.com/gadgets/2019/05/25-years-of-hypercard-the-missing-link-to-the-web/
https://doi.org/10.1145/192426.192435
https://doi.org/10.1145/1095034.1095062
https://getbootstrap.com/
https://doi.org/10.1145/3491102.3502064
http://vis.stanford.edu/papers/d3
https://doi.org/10.1145/3706598.3713285
https://doi.org/10.1145/1456650.1456652
https://www.figma.com/
https://doi.org/10.1145/3397537.3397542
https://doi.org/10.1016/j.ijhcs.2015.10.008
https://doi.org/10.1016/j.ijhcs.2015.10.008
https://doi.org/10.1145/3586183.3606817
https://doi.org/10.1145/3586183.3606817
https://gemini.google.com/
https://angular.dev/
https://mui.com/
https://ant.design/
https://doi.org/10.1037/h0046827
https://doi.org/10.1037/h0046827
https://doi.org/10.1145/1294211.1294254
https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1145/155360.155364
https://doi.org/10.1145/3491102.3501931
https://doi.org/10.1145/3491102.3501931
https://doi.org/10.1145/2807442.2807446
https://github.com/GoogleChromeLabs/ProjectVisBug/
https://github.com/GoogleChromeLabs/ProjectVisBug/
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/1502650.1502667
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3173574.3173697
https://react.dev/
https://doi.org/10.1145/3586182.3615827
https://doi.org/10.1145/3586182.3615827
https://doi.org/10.1145/3706598.3714164
https://doi.org/10.1145/3706598.3714164
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://doi.org/10.1145/3332165.3347934
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://x.com/yoshikischmitz/status/1176642448077967362
https://x.com/yoshikischmitz/status/1176642448077967362
https://www.squarespace.com/
https://storybook.js.org/
https://storybook.js.org/

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Bryan Min and Haijun Xia

26 pages. https://doi.org/10.1145/3613904.3642400
[45] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: Enabling

Multilevel Exploration and Sensemaking with Large LanguageModels. In Proceed-
ings of the 36th Annual ACM Symposium on User Interface Software and Technology
(San Francisco, CA, USA) (UIST ’23). Association for Computing Machinery, New
York, NY, USA, Article 1, 18 pages. https://doi.org/10.1145/3586183.3606756

[46] Desney Tan, Brian Meyers, and Mary Czerwinski. 2004. WinCuts: Ma-
nipulating Arbitrary Window Regions for More Effective Use of Screen
Space. In Extended Abstracts of Proceedings of ACM Human Factors
in Computing Systems CHI 2004 (extended abstracts of proceedings
of acm human factors in computing systems chi 2004 ed.). 1525–1528.
https://www.microsoft.com/en-us/research/publication/wincuts-manipulating-
arbitrary-window-regions-for-more-effective-use-of-screen-space/

[47] Kesler Tanner, Naomi Johnson, and James A. Landay. 2019. Poirot: A Web
Inspector for Designers. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3290605.3300758

[48] Inc. Webflow. n.d.. Webflow. https://webflow.com/ Accessed: 2025-04-10.
[49] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis (2nd ed.).

Springer Publishing Company, Incorporated.
[50] Leland Wilkinson. 2011. The grammar of graphics. In Handbook of computational

statistics: Concepts and methods. Springer, 375–414.
[51] Inc. Wix. n.d.. Wix. https://wix.com/ Accessed: 2025-04-10.
[52] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,

Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager
2: Augmenting Visual Analysis with Partial View Specifications. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 2648–2659. https://doi.org/10.1145/3025453.3025768

[53] Xiong Zhang and Philip J. Guo. 2018. Fusion: Opportunistic Web Prototyping
with UI Mashups. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for
Computing Machinery, New York, NY, USA, 951–962. https://doi.org/10.1145/
3242587.3242632

[54] Jonathan Zong, Dhiraj Barnwal, Rupayan Neogy, and Arvind Satyanarayan.
2021. Lyra 2: Designing Interactive Visualizations by Demonstration. IEEE
Transactions on Visualization & Computer Graphics (Proc. IEEE InfoVis) (2021).
https://doi.org/10.1109/TVCG.2020.3030367

https://doi.org/10.1145/3613904.3642400
https://doi.org/10.1145/3586183.3606756
https://www.microsoft.com/en-us/research/publication/wincuts-manipulating-arbitrary-window-regions-for-more-effective-use-of-screen-space/
https://www.microsoft.com/en-us/research/publication/wincuts-manipulating-arbitrary-window-regions-for-more-effective-use-of-screen-space/
https://doi.org/10.1145/3290605.3300758
https://doi.org/10.1145/3290605.3300758
https://webflow.com/
https://wix.com/
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3242587.3242632
https://doi.org/10.1145/3242587.3242632
https://doi.org/10.1109/TVCG.2020.3030367

	Abstract
	1 Introduction
	2 Malleable ODI Design Convention
	2.1 Malleable ODI Definition
	2.2 Design Approach

	3 The Meridian Specification
	3.1 Specifying Views
	3.2 Specifying Data Binding
	3.3 Specifying Malleability

	4 Demonstration One: End-Users
	5 Demonstration Two: Developers
	5.1 Developer Package
	5.2 Reproducing Real-World Examples
	5.3 Malleable ODI Rendering Pipeline
	5.4 Limitations

	6 Demonstration Three: Designers
	6.1 No-Code Website Builder
	6.2 Implementation

	7 Discussion and Future Work
	8 Related Work
	8.1 User Interface Frameworks
	8.2 Achieving the Vision of Malleable Interfaces

	9 Conclusion
	Acknowledgments
	References

